The Noah Project

Rebuilding a sustainable world.

Study of Bacteria in Space Yields Strange Results

Leave a comment

Pseudomonas aeruginosa, a bacterium grown onboard the space shuttle Atlantis, forms in a "column-and-canopy" structure unlike the arrangements observed in bacteria grown on Earth.

Miriam Kramer reports on a study conducted in space that could be useful for long term space-flight missions and  may even have implications for bacterial research right here on earth.

A team of scientists sent samples of the bacterium Pseudomonas aeruginosa into orbit aboard NASA’s space shuttle Atlantis to see how they grew in comparison to their Earth-dwelling counterparts.
 The 3D communities of microorganisms (called biofilms) grown aboard the space shuttle had more live cells, were thicker and had more biomass than the bacterial colonies grown in normal gravity on Earth as controls. The space bacteria also grew in a “column-and-canopy” structure that has never been observed in bacterial colonies on Earth, according to NASA scientists. [The Human Body in Space: 6 Weird Facts]
 “Biofilms were rampant on the Mir space station and continue to be a challenge on the [International Space Station], but we still don’t really know what role gravity plays in their growth and development,” NASA’s study leader Cynthia Collins, an assistant professor in the department of chemical and biological engineering at Rensselaer Polytechnic Institute in Troy, N.Y., said in a statement. “Our study offers the first evidence that spaceflight affects community-level behaviors of bacteria, and highlights the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.”
“The unique appearance and structure of the P. aeruginosa biofilms formed in microgravity suggests that nature is capable of adapting to nonterrestrial environments in ways that deserve further studies, including studies exploring long-term growth and adaptation to a low-gravity environment,” Collins said in a statement. “Before we start sending astronauts to Mars or embarking on other long-term spaceflight missions, we need to be as certain as possible that we have eliminated or significantly reduced the risk that biofilms pose to the human crew and their equipment.”
The study, published in the April 20 issue of the journal PLOS ONE, also could have implications for bacterial research on Earth. It’s possible that this kind of research could help scientists and doctors more effectively limit the spread of infection in hospitals, Collins said.
Advertisements

Author: Daniela

I was born in Croatia, at that time Yugoslavia. My family moved to the US when I was very young, but I still treasure the memories of my grandfather teaching me how to protect myself against the "evil eye," my grandmother shopping early every morning, at the open air market, to buy the freshest vegetables for the day's meals, and the traditions that were the underpinnings of our society. Someone once noted that "For all of us that want to move forward, there are a very few that want to keep the old methods of production, traditions and crafts alive." I am a fellow traveler with those who value the old traditions and folk wisdom. I believe the knowledge they possess can contribute significantly to our efforts to build a more sustainable world; one that values the individual over the corporation, conservation over growth and happiness over wealth.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s